CHAPITRE 2

Entropie et deuxieme principe

2.1 Entropie comme fonction d’état

Déterminer quelles fonctions suivantes peuvent représenter l’entropie d’un
systeme de température positive. Dans ces expressions, Fy et Vj sont des
constantes représentant une énergie et un volume respectivement.
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Solution

Etant donné que Uentropie S (U, V, N) est une fonction d’état extensive et que
les variables d’état U, V et N sont aussi extensives, ces grandeurs physiques
doivent satisfaire 'identité S (AU, A\V,AN) = AS(U,V,N) ou A est un entier
positif. Les expressions 2) et 3) ne satisfont pas cette identité. De plus, comme
la dérivée partielle de I’entropie par rapport a I’énergie interne dans 1’expression
2) est négative, cette expression doit aussi étre rejetée car elle donne lieu & une
température négative. Ainsi, seules les expressions 1) et 4) peuvent représenter
I’entropie d’un systeme de température positive.
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2.2 Travail dépendant du processus

Trois processus sont effectués sur un gaz d’un état initial (p1, V1) & un état final
(p27 ‘/2) :

1) un processus isochore (volume constant) suivi d’un processus isobare (pres-
sion constante),

2) un processus isobare suivi d’un processus isochore,

3) un processus ou pV est constant.

Pour ces trois processus, déterminer le travail effectué sur le gaz de 1’état initial
a I’état final. Ces processus sont supposés réversibles. Déterminer les expres-
sions analytiques des travaux d’abord puis donner ensuite leurs valeurs numé-
riques en joules.

Application numérique

pr=po=1bar, Vi =3Vy, pp=3pget Vo=V =11

(2.2] Solution

Aucun travail n’est effectué sur le gaz durant un processus isochore, seulement
durant le processus isobare ou celui ou p V reste constant.

1) Le travail effectué sur le gaz lors d’un processus isochore suivi d’un proces-
sus isobare s’écrit,

Vo Va Vo
W=—/ pdV = —po dV = —3pg dVv
7 7 3Vo

:—3]7()(3‘/0— V())ZGP()‘/O:GOOJ

2) Le travail effectué sur le gaz lors d’un processus isobare suivi d’un processus

isochore s’écrit,
Vo Va Vo
—/ pdV:—pl/ dV:—po/ dv
Vi Vi 3Vo

= —Do (3VO_ VO) =2po Vo =200J

w

3) Le travail effectué sur le gaz lors d’un processus ou p V' reste constant, i.e.
pV = p1 Vi = cste, s’écrit,

v Y av Yo av
We- [ Cpav—-pvi [ =smn [
Vi A%} V 3Vo V

"
=—3poVoln (0) =3poVoln 3=2330J
3V
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2.3 Pompe a vélo

De Tair est comprimé dans la chambre & air d’un pneu de vélo a ’aide d’une
pompe a vélo. La poignée de la pompe est descendue d’une position initiale xo
a une position finale z; ou z1 < x5 et la norme de la force est supposée étre
donnée par,

F(2) = Frax 22

T2 — I

Le processus est supposé étre réversible et le cylindre de la pompe a une section
de surface A. Déterminer, compte tenu de la pression atmosphérique py

1) le travail W, effectué par la main sur la poignée de la pompe,
2) la pression p (),
3) le travail Wiy effectué sur le systéme d’apres la relation (2.42).

Application numérique

Frax = 10 N, 21 =20 cm, 25 = 40 cm, A = 20 cm? et p, = 10° Pa.

(2.3) Solution

1) Le travail effectué par la main sur la poignée de la pompe est,

W, = - / F (z)dx

2

Finax o
:—L/ (o — x)dx

Iy — I1 5

__ (&) (xg (01— a2) — 5 (o - x%))

Fmax (1‘2 - 1'1) =1J

N | =

2) La pression résultante p (), exercée sur 'air & l'intérieur de la chambre &
air lorsque la poignée de la pompe est en position z, est la somme de la
pression atmosphérique pg et de la force F' (x) exercée par le piston sur lair
divisé par la surface A,

B F(z) Frax To— T
p(@) =po+ —— =po+ —— ———

o — X1
= (10°+5-10% (2 — 5z)) Nm™?

3) Le travail effectué sur le systéme par l'environnement et la personne ap-
puyant sur la poignée de la pompe est,

Wig = — / p(x)Ade =pyA(xe — x1) + W, =417J

2
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2.4 Se frotter les mains

Se frotter les mains est un processus dissipatif qu’on désire modéliser et quan-
tifier. On considere les mains comme des solides indéformables et on suppose
qu’il n’y a pas de transfert de chaleur entre les mains et I’environnement.

1) Déterminer la puissance extérieure P <t dissipée par le frottement durant
ce processus en termes de la force de frottement F fr ot de la vitesse v,
supposée constante, d’'une main par rapport a l'autre.

2) A température ambiante T, déterminer le taux de production d’entropie
IIs de ce processus.

Application numérique

|F™| = 1N, |jo]| = 0.1m/s et T = 25°C

Solution

1) Par rapport au référentiel du centre de masse des mains, chaque main
se déplace avec une vitesse de norme constante ||v/2]. Il y a deux types
forces agissant sur le systéeme formé des deux mains : des forces extérieures
d’entrainement de norme ||F || et des forces intérieures de frottement
de norme ||F ™| exercées sur chaque main. La puissance extérieure P <
exercée sur le systéeme des deux mains, qui est due uniquement aux forces
extérieures d’entrainement exercées sur chaque main, s’écrit,

pest = (Fo) . (g) + (= FoY) . (7 g) — Foxt Ly

D’apres la deuxieme loi de Newton (1.13) appliquée & chaque main qui se
déplace a vitesse constante, et donc a quantité de mouvement constante par
rapport au référentiel du centre de masse des mains, les forces extérieures
sont égales et opposées aux forces de frottement,

Fext +Ffr -0

Compte tenu de cette relation, la puissance extérieure P s’écrit en terme
des forces de frottement comme,

Pt = _FT .y =01W

car F. v < 0 étant donné que la force de frottement s’oppose au mouve-
ment.

2) Comme on consideére les mains comme des solides indéformables, il ne peut
pas y avoir d’action mécanique de I'extérieur sur les mains, ce qui signifie
que la puissance mécanique de déformation du systeme est nulle, i.e. Py =
0. De plus, comme on suppose qu'il n’y a pas de transfert de chaleur entre
les mains et 'environnement, la puissance thermique est nulle, i.e. Py = 0.
Ainsi, le premier principe (1.11) se réduit a,

E _ Pext
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Comme le mouvement des mains se fait avec une vitesse de norme constante
|lv/2|| par rapport au référentiel du centre de masse des mains, I’énergie
cinétique du systeme est constante. Par conséquent, étant donné que 1’éner-
gie E est la somme de I’énergie cinétique constante et de ’énergie interne
U, les dérivées temporelles de de ces deux énergies sont égales,

E=U

Comme les mains sont considérées comme des solides indéformables, le
volume du systeme est constant, i.e. V' = 0. Par conséquent, 1’équation
d’évolution (2.12) de I’énergie interne se réduit a,

U=TS

De plus, la puissance thermique est nulle, i.e. Py = 0. Ainsi, I’équation
d’évolution de l’entropie (2.18) se réduit a,

S =1Ilg

Finalement, le taux de production d’entropie s’écrit en termes de la force
de frottement comme,

. U E pext Ffr.ovp
He=S8=—- === = =3.36-107*W/K
S T T T T /

Le systeme constitué des deux mains n’est pas un systeme simple. En ef-
fet, la vitesse n’est pas uniforme, car les deux mains ont un mouvement
relatif I'une par rapport a 'autre. Par conséquent, on doit attribuer une
fonction d’état vitesse et une variable entropie spécifique a chaque main.
En particulier, la relation (1.27) n’est pas applicable parce que le centre de
masse des deux mains est immobile bien que la puissance extérieure P <t
soit clairement non-nulle.

2.5 Echauffement par brassage

Dans une expérience analogue a celle de Joule, on utilise un moteur électrique au
lieu d’un poids de masse pour brasser le liquide. On considere que la puissance
thermique Pg due au frottement visqueux est connue. De plus, on suppose que
Iénergie interne U est une fonction de la température T telle que U = M ¢cp; T,
ou le coefficient ¢y, qui représente la chaleur spécifique par unité de masse et
de température, est connu et indépendant de la température.

1) Déduire laccroissement de température AT di au brassage qui a lieu du-

rant un intervalle de temps At.

2) Déterminer l'expression de la variation d’entropie AS durant ce processus

dont la température initiale est Tj.
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Application numérique

M=200g, Po=19W, cpy =3 J g K™, At =120 s et Ty = 300 K.

Solution

1) D’apres le premier principe, augmentation d’énergie interne AU durant
un intervalle de temps At s’écrit,

AU = Py At

L’augmentation d’énergie interne AU pour une augmentation de la tempé-
rature AT du liquide s’écrit aussi,

AU = M ey AT

Ainsi, en comparant ces deux équations, on obtient ’expression suivante
pour 'augmentation de température,

2) Le premier principe (2.22) s’écrit,

. . . P
U=TS5=Fg ainsi S:TQ
D’apres 1) la température a la forme suivante,
o
T =T t
o+ MCM
ce qui implique que,
Po__ 4
P Py dt
0 =2 = — =90 ey | Mo
T T: + i + i t
O Men M ey Th

En intégrant cette équation par rapport au temps, on obtient,

t PQ

S(t) ——dt’
S(t):/ dS= [ Mey | Mo
Sg 1+ Q t/
0 MCM T()
Pot
= M In{14+ —=>—
So+ M e n< + McMTO)

Ainsi, I'accroissement d’entropie durant le processus de brassage est,

Po At
AS—S(At)— SO—MC]\/IIH(I—F]M))
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2.6 Variation d’entropie dans ’eau

De l'eau est chauffée par un petit chauffage électrique et la température de
I’eau est mesurée. Le chauffage fournit de la chaleur au systéme a 'aide d’une
puissance thermique Pg. Le récipient est un calorimetre dont on peut négliger
I’absorption de chaleur. Avant d’enclencher le chauffage, la température de I'eau
est Ty et son entropie est Sy. Une évolution linéaire de la température donnée
par T (t) = To + At est observée. Déduire la variation d’entropie AS durant ce
processus.

Solution

On traite eau comme le systéme est simple. Son évolution est réversible (2.23).
Le premier principe (2.22) implique que,

_ P _ Po
CT(t) T+ At

Ainsi, la différentielle de I’entropie est exprimée comme,

A
Py ngt
ds=—r2| ——
Al 4y
To

En intégrant cette équation au cours du temps, on obtient,

S(t) tP Tédt’ P A
S(t):/ as= [ To| Do :SOJFfln(lJth)
So 0 1+t 0
To

Ainsi, la variation d’entropie dans ’eau est donnée par,

_ _ g A
AS = S (At) — SO_Aln(HTOAt)

2.7 Horloge suisse

Une entreprise horlogere suisses mentionne dans son catalogue la puissance
mécanique Py dissipée par une de ses horloges (fig. 2.1). Le travail effectué sur
I’horloge est dii & des fluctuations de température AT autour de la température
ambiante moyenne 7. Il permet a ’horloge de fonctionner durant un intervalle
de temps At. On considére que la pression atmosphérique p®*t est égale a la
pression du gaz p, i.e. p®* = p. La pression p et le volume V du gaz sont liés
par la loi des gaz parfait pV = NRT ou R est la constante des gaz parfait. En
considérant que le gaz & l'intérieur la capsule est toujours a 1’équilibre avec I'air
a Pextérieur de la capsule (pression et température intérieures et extérieures
égales). D’apres les données de Uentreprise horlogere, estimer le volume V' de
la capsule de gaz utilisée pour faire fonctionner cette horloge.
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Fig. 2.1 Un horloge regoit de ’énergie d’une capsule de gaz (zone grise). Le gaz se détend
et se comprime sous 'effet des fluctuations de la température ambiante.

Application numérique

Py =0.25-106W, T = 25°C, AT = 1°C, p™* = 10° Pa et At = 1 jour.

Solution

D’apres la relation (2.41), le travail infinitésimal effectué sur le gaz & pression
atmosphérique p constante dans le volume V' a l'intérieur de la capsule s’écrit,

W = —pdV

La loi des gaz parfait implique que,

NR
dV = —dT
p
Par conséquent, le travail infinitésimal effectué sur le gaz par I'environnement
devient,
OW = — NRdAT

L’état initial ¢ correspond a I’état d’équilibre « chaud » juste apres une fluctua-
tion et I’état d’équilibre f correspond a 'état d’équilibre « froid » juste avant
la prochaine fluctuation. Le travail W;; effectué sur le gaz entre 1'état initial ¢,
caractérisé par les grandeurs thermodynamiques (V; =V + AV, T; = T+ AT)
et 1'état final f, caractérisé par les grandeurs thermodynamiques (V; = V,
Ty =T), est obtenu en intégrant ’équation précédente,

Ty
Wip = — NRdAT = NRAT
T;

De plus, la loi des gaz parfait évaluée a 1’état final implique que,

pV

Wi = —AT

f T
Ainsi,

Wi T

 pAT

D’apres la relation (1.40) pour un processus mécanique & puissance constante,
le travail W; est égal a la puissance mécanique Py multipliée par I'intervalle
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de temps At durant lequel cette puissance est appliquée, i.e. Wiy = Py At.
Par conséquent, le volume V' de la capsule est donné par I'expression,

Py AtT

= =128 cm®
D AT 8 cm

V =

2.8 Détentes réversible et irréversible d’un gaz

Une mole de gaz subit une détente au moyen de deux processus différents. Le
gaz satisfait I’équation d’état pV = NRT ou R est une constante, IV est le
nombre de moles, p la pression, T la température et V' le volume du gaz. Les
températures initiales et finales sont Tg. Les parois du récipient sont diathermes.
Toutefois, si un processus a lieu extrémement rapidement, les parois peuvent
étre considérées comme adiabatiques. La pression initiale du gaz est pi, le
pression finale est ps. Exprimer le travail effectué sur le gaz en termes de pq,
po et T pour les processus suivants :

1) un processus isotherme réversible,

2) une variation de volume extrémement rapide durant laquelle la pression
exercée sur le gaz vaut pg, suivie par un processus isochore durant lequel
la température atteint a nouveau la température d’équilibre Tj.

Solution

Afin de déterminer le travail effectué sur le gaz durant un processus d’un état
initial (V1, p1,Tp) & un état final (Va, pa, Tp), on utilise ’équation d’état,

1%
p1Vi=p2Vo=NRTy ainsi 2_h
W D2

1) Le travail effectué sur le gaz durant une expansion réversible de I’état initial
(Vi,p1,To) a Vétat final (Va,pe,Tp) est obtenu en calculant 'expression
intégrale (2.42),

Ve V2 dv V;
Wm:—/ pdV:—NRTO/ 5 =~ NRToln <V2>
Vl Vl 1

~ NRT,In (pl) — NRTln <p?)
D2 P1

2) Il n’y a pas de travail effectué sur le gaz durant un processus isochore
étant donné que le volume est constant. Pour déterminer le travail effectué
par I'environnement & pression p®* = p, sur le gaz durant un processus
isobare irréversible de I’état initial (Vy,p1,Tp) a Pétat final (Va, pa, Tp), on
doit intégrer expression générale (2.36) de la puissance mécanique Py par
rapport au temps,

to Vo Va Vs
/ PWdt:—/ peXth:—/ png:—pg/ av
t1 Vi i |4

—p2Vo + 2V = % (p1Vi) — p2Vo = NRTy (? - 1)
1 1

Wia
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2.9 Processus adiabatique réversible sur un gaz

Un gaz parfait a pression p et volume V est tel que son énergie interne est
donnée par U = ¢pV, ou c¢ est une constante sans dimension. Déterminer le
pression p (V) pour une compression ou une expansion adiabatique réversible.

Solution

Comme le processus est adiabatique et réversible, il n’a a pas de variation
d’entropie. On peut donc utiliser le volume V' comme unique variable d’état.
Ainsi, Iénergie interne s’écrit U (V') = c¢p (V) V. La dérivée de I’énergie interne
par rapport au volume est donnée par,

dUu dp
v = CayVter=-v
qui peut étre remis en forme comme,
dp dV
_ —_— = O
» + v %

N

ou v = (c+ 1) /e. L'intégration de cette expression de I’état initial (p;, V;) &
Iétat final (py, Vy) est écrite comme,

P dp /Vf av
—+ — =0
/p,- p 7 Vi Vv

i

ce qui donne,

VV
In (Z) +vIn <“2) =0 ainsi In <ZJ: Vf’) =0

Par conséquent, les variables initiales et finales sont liées par,

iV =psVy

ce qui donne l'identité,
p V7 = cste

2.10 Compression thermique d’un ressort

On considere un piston de masse négligeable coulissant sans frottement dans
un cylindre d’aire A et attaché a un ressort dont la constante de rappel est k
(fig. 2.2). Lorsque le cylindre est vide, le piston se trouve en position xg. On le
remplit d’'un gaz parfait qui satisfait la loi pV = NRT. L’énergie interne du
gaz est donnée par U = ¢ NRT ol ¢ > 0 est une constante et R > 0 également.
Apres remplissage, il se trouve alors a 1’équilibre en position initiale x;. On
chauffe le cylindre et on constate qu’il se trouve alors a 1’équilibre en position
finale . On suppose que ce processus est réversible et que le systéme se trouve
dans une enceinte a vide, c’est-a-dire que la pression dans I’enceinte est nulle.
La masse du piston n’est pas prise en considération ici.
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:
Ty

| Ty

0 T

Fig. 2.2 Un piston enfermant un gaz passe de la position z; & la position z ¢, lorsque le
gaz contenu dans le cylindre est chauffé. Le piston est retenu par un ressort de constante
élastique k. La position au repos du ressort est en zq.

1) Déterminer le volume V,, la pression p, et la température T, du gaz en
position d’équilibre a en termes des parametres k, A, xg et z,.

2) Montrer que la dérivée de la pression p par rapport au volume V est de la

forme,
dp k
av -~ A?
3) Déterminer le travail — W,y effectué par le gaz sur le ressort lorsque le
piston se déplace de x; a xy en termes des parametres k, x; et ;.
4) Déterminer la variation d’énergie interne AU,y du gaz lorsque le piston se

déplace de x; a xy en termes des parametres k, ¢, xg, x; et xy.

Solution

1) Dans l’état d’équilibre a ot a = {4, f} (i.e. état initial ou final), le volume
du gaz parfait est donné par,

V, = Az,
et la pression du gaz parfait est donnée par,
F, k
pa:_jzz(xa_ Z‘o)

ou F, est la projection de la force de rappel agissant sur le ressort. Vu que
le processus est réversible, la relation (2.37) implique que la pression du
gaz parfait est égale a la pression exercée par le ressort. La température du
gaz parfait est donnée par,

paVa _ kK
T = = — —
“="NR ~ NR % %)
2) Les expressions pour le volume et la pression du gaz parfait impliquent que,
1 k k
dp=——dF = —dzx = — dV
P="2 AT
Ainsi,
dp k

W:ﬁ:cste
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3) Par conséquent, la pression p est exprimée en terme du volume V' comme,

k
P="7 (V—-")
Le travail — Wy effectué par le gaz parfait sur le ressort est donné en termes
de V; et V; par,

- if:/ pde—Q/ (V= Vy)dV
Vi A% Jy,

k

k
:@(sz*Vf)* Vo (Vs = Vi)

On peut réécrire ce résultat en termes de x comme,

k
~Wip =5 (25 = i) = kao (g = 2:) =

g ((l"f — 20)” — (@i — 550)2)

Le travail effectué par le gaz parfait sur le ressort est égal a la variation
d’énergie élastique du ressort lors de sa compression, ce qui signifie qu’il
est entierement utilisé pour comprimer le ressort. Ceci est une conséquence
du fait que la dilatation du gaz parfait soit un processus réversible. La
variation d’énergie interne AU;s est donnée par,

AUy = cNR(Ty — T) = Ck( (zf — @o) zp — (i — 170)93@)





