
Chapitre 2

Entropie et deuxième principe

2.1 Entropie comme fonction d’état

Déterminer quelles fonctions suivantes peuvent représenter l’entropie d’un
système de température positive. Dans ces expressions, E0 et V0 sont des
constantes représentant une énergie et un volume respectivement.
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2.1 Solution

Etant donné que l’entropie S (U, V,N) est une fonction d’état extensive et que
les variables d’état U , V et N sont aussi extensives, ces grandeurs physiques
doivent satisfaire l’identité S (λU, λV, λN) = λS (U, V,N) où λ est un entier
positif. Les expressions 2) et 3) ne satisfont pas cette identité. De plus, comme
la dérivée partielle de l’entropie par rapport à l’énergie interne dans l’expression
2) est négative, cette expression doit aussi être rejetée car elle donne lieu à une
température négative. Ainsi, seules les expressions 1) et 4) peuvent représenter
l’entropie d’un système de température positive.
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2.2 Travail dépendant du processus

Trois processus sont effectués sur un gaz d’un état initial (p1, V1) à un état final
(p2, V2) :

1) un processus isochore (volume constant) suivi d’un processus isobare (pres-
sion constante),

2) un processus isobare suivi d’un processus isochore,

3) un processus où p V est constant.

Pour ces trois processus, déterminer le travail effectué sur le gaz de l’état initial
à l’état final. Ces processus sont supposés réversibles. Déterminer les expres-
sions analytiques des travaux d’abord puis donner ensuite leurs valeurs numé-
riques en joules.

Application numérique

p1 = p0 = 1 bar, V1 = 3V0, p2 = 3 p0 et V2 = V0 = 1 l.

2.2 Solution

Aucun travail n’est effectué sur le gaz durant un processus isochore, seulement
durant le processus isobare ou celui où p V reste constant.

1) Le travail effectué sur le gaz lors d’un processus isochore suivi d’un proces-
sus isobare s’écrit,

W = −
∫ V2

V1

p dV = − p2
∫ V2

V1

dV = − 3 p0

∫ V0

3V0

dV

= − 3 p0 (3V0 − V0) = 6 p0 V0 = 600 J

2) Le travail effectué sur le gaz lors d’un processus isobare suivi d’un processus
isochore s’écrit,

W = −
∫ V2

V1

p dV = − p1
∫ V2

V1

dV = − p0
∫ V0

3V0

dV

= − p0 (3V0 − V0) = 2 p0 V0 = 200 J

3) Le travail effectué sur le gaz lors d’un processus où p V reste constant, i.e.
p V = p1 V1 = cste, s’écrit,

W = −
∫ V2

V1

p dV = − p1 V1
∫ V2

V1

dV

V
= − 3 p0 V0

∫ V0

3V0

dV

V

= − 3 p0 V0 ln

(
V0

3V0

)
= 3 p0 V0 ln 3 = 330 J
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2.3 Pompe à vélo

De l’air est comprimé dans la chambre à air d’un pneu de vélo à l’aide d’une
pompe à vélo. La poignée de la pompe est descendue d’une position initiale x2
à une position finale x1 où x1 < x2 et la norme de la force est supposée être
donnée par,

F (x) = Fmax
x2 − x

x2 − x1

Le processus est supposé être réversible et le cylindre de la pompe a une section 
de surface A. Déterminer, compte tenu de la pression atmosphérique p0

1) le travail Wp effectué par la main sur la poignée de la pompe,

2) la pression p (x),

3) le travail W12 effectué sur le système d’après la relation (2.42).

Application numérique

F max = 10 N, x1 = 20 cm, x2 = 40 cm, A = 20 cm2 et p0
  = 105 Pa.

2.3 Solution

1) Le travail effectué par la main sur la poignée de la pompe est,

Wp =                    −
∫ x1

x2

F (x) dx

= − Fmax

x2 − x1

∫ x1

x2

(x2 − x) dx

= −
(

Fmax

x2 − x1

)(
x2 (x1 − x2)− 1

2

(
x21 − x22

))
=

1

2
Fmax (x2 − x1) = 1 J

2) La pression résultante p (x), exercée sur l’air à l’intérieur de la chambre à
air lorsque la poignée de la pompe est en position x, est la somme de la
pression atmosphérique p0 et de la force F (x) exercée par le piston sur l’air
divisé par la surface A,

p (x) = p0 +
F (x)

A
= p0 +

Fmax

A

x2 − x

x2 − x1

=
(
105 + 5 · 103 (2− 5x)

)
N m−2

3) Le travail effectué sur le système par l’environnement et la personne ap-
puyant sur la poignée de la pompe est,

W12 =  −
∫ x1

x2

p (x)Adx = p0A (x2 − x1) +Wp = 41 J
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2.4 Se frotter les mains

Se frotter les mains est un processus dissipatif qu’on désire modéliser et quan-
tifier. On considère les mains comme des solides indéformables et on suppose
qu’il n’y a pas de transfert de chaleur entre les mains et l’environnement.

1) Déterminer la puissance extérieure P ext dissipée par le frottement durant
ce processus en termes de la force de frottement F fr et de la vitesse v,
supposée constante, d’une main par rapport à l’autre.

2) A température ambiante T , déterminer le taux de production d’entropie
ΠS de ce processus.

Application numérique

‖F fr‖ = 1 N, ‖v‖ = 0.1 m/s et T = 25◦C

2.4 Solution

1) Par rapport au référentiel du centre de masse des mains, chaque main
se déplace avec une vitesse de norme constante ‖v/2‖. Il y a deux types
forces agissant sur le système formé des deux mains : des forces extérieures
d’entrâınement de norme ‖F ext‖ et des forces intérieures de frottement
de norme ‖F fr‖ exercées sur chaque main. La puissance extérieure P ext

exercée sur le système des deux mains, qui est due uniquement aux forces
extérieures d’entrâınement exercées sur chaque main, s’écrit,

P ext =
(
F ext

)
·
(v

2

)
+
(
−F ext

)
·
(
− v

2

)
= F ext · v

D’après la deuxième loi de Newton (1.13) appliquée à chaque main qui se
déplace à vitesse constante, et donc à quantité de mouvement constante par
rapport au référentiel du centre de masse des mains, les forces extérieures
sont égales et opposées aux forces de frottement,

F ext + F fr = 0

Compte tenu de cette relation, la puissance extérieure P ext s’écrit en terme
des forces de frottement comme,

P ext = −F fr · v = 0.1 W

car F fr · v < 0 étant donné que la force de frottement s’oppose au mouve-
ment.

2) Comme on considère les mains comme des solides indéformables, il ne peut
pas y avoir d’action mécanique de l’extérieur sur les mains, ce qui signifie
que la puissance mécanique de déformation du système est nulle, i.e. PW =
0. De plus, comme on suppose qu’il n’y a pas de transfert de chaleur entre
les mains et l’environnement, la puissance thermique est nulle, i.e. PQ = 0.
Ainsi, le premier principe (1.11) se réduit à,

Ė = P ext
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Comme le mouvement des mains se fait avec une vitesse de norme constante
‖v/2‖ par rapport au référentiel du centre de masse des mains, l’énergie
cinétique du système est constante. Par conséquent, étant donné que l’éner-
gie E est la somme de l’énergie cinétique constante et de l’énergie interne
U , les dérivées temporelles de de ces deux énergies sont égales,

Ė = U̇

Comme les mains sont considérées comme des solides indéformables, le
volume du système est constant, i.e. V̇ = 0. Par conséquent, l’équation
d’évolution (2.12) de l’énergie interne se réduit à,

U̇ = T Ṡ

De plus, la puissance thermique est nulle, i.e. PQ = 0. Ainsi, l’équation
d’évolution de l’entropie (2.18) se réduit à,

Ṡ = ΠS

Finalement, le taux de production d’entropie s’écrit en termes de la force
de frottement comme,

ΠS = Ṡ =
U̇

T
=
Ė

T
=
P ext

T
= − F fr · v

T
= 3.36 · 10−4 W/K

Le système constitué des deux mains n’est pas un système simple. En ef-
fet, la vitesse n’est pas uniforme, car les deux mains ont un mouvement
relatif l’une par rapport à l’autre. Par conséquent, on doit attribuer une
fonction d’état vitesse et une variable entropie spécifique à chaque main.
En particulier, la relation (1.27) n’est pas applicable parce que le centre de
masse des deux mains est immobile bien que la puissance extérieure P ext

soit clairement non-nulle.

2.5 Echauffement par brassage

Dans une expérience analogue à celle de Joule, on utilise un moteur électrique au
lieu d’un poids de masse pour brasser le liquide. On considère que la puissance
thermique PQ due au frottement visqueux est connue. De plus, on suppose que
l’énergie interne U est une fonction de la température T telle que U = M cM T ,
où le coefficient cM , qui représente la chaleur spécifique par unité de masse et
de température, est connu et indépendant de la température.

1) Déduire l’accroissement de température ∆T dû au brassage qui a lieu du-
rant un intervalle de temps ∆t.

2) Déterminer l’expression de la variation d’entropie ∆S durant ce processus
dont la température initiale est T0.
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Application numérique

M = 200 g, PQ = 19 W, cM = 3 J g−1K−1, ∆t = 120 s et T0 = 300 K.

2.5 Solution

1) D’après le premier principe, l’augmentation d’énergie interne ∆U durant
un intervalle de temps ∆t s’écrit,

∆U = PQ ∆t

L’augmentation d’énergie interne ∆U pour une augmentation de la tempé-
rature ∆T du liquide s’écrit aussi,

∆U = M cM ∆T

Ainsi, en comparant ces deux équations, on obtient l’expression suivante
pour l’augmentation de température,

∆T =
PQ ∆t

M cM
= 3.8K.

2) Le premier principe (2.22) s’écrit,

U̇ = T Ṡ = PQ ainsi Ṡ =
PQ
T

D’après 1) la température à la forme suivante,

T = T0 +
PQ
M cM

t

ce qui implique que,

dS =
PQ
T

dt =
PQ dt

T0 +
PQ
M cM

t
= M cM


PQ

M cM T0
dt

1 +
PQ

M cM T0
t


En intégrant cette équation par rapport au temps, on obtient,

S (t) =

∫ S(t)

S0

dS =

∫
t

0

M cM


PQ

M cM T0
dt′

1 +
PQ

M cM T0
t′


= S0 +M cM ln

(
1 +

PQ t

M cM T0

)
Ainsi, l’accroissement d’entropie durant le processus de brassage est,

∆S = S (∆t)− S0 = M cM ln

(
1 +

PQ ∆t

M cM T0

)
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2.6 Variation d’entropie dans l’eau

De l’eau est chauffée par un petit chauffage électrique et la température de
l’eau est mesurée. Le chauffage fournit de la chaleur au système à l’aide d’une
puissance thermique PQ. Le récipient est un calorimètre dont on peut négliger
l’absorption de chaleur. Avant d’enclencher le chauffage, la température de l’eau
est T0 et son entropie est S0. Une évolution linéaire de la température donnée
par T (t) = T0 +A t est observée. Déduire la variation d’entropie ∆S durant ce
processus.

2.6 Solution

On traite l’eau comme le système est simple. Son évolution est réversible (2.23).
Le premier principe (2.22) implique que,

Ṡ =
PQ
T (t)

=
PQ

T0 +A t

Ainsi, la différentielle de l’entropie est exprimée comme,

dS =
PQ
A


A

T0
dt

1 +
A

T0
t


En intégrant cette équation au cours du temps, on obtient,

S (t) =

∫ S(t)

S0

dS =

∫
t

0

PQ
A


A

T0
dt′

1 +
A

T0
t′

 = S0 +
PQ
A

ln

(
1 +

A

T0
t

)

Ainsi, la variation d’entropie dans l’eau est donnée par,

∆S = S (∆t)− S0 =
PQ
A

ln

(
1 +

A

T0
∆t

)

2.7 Horloge suisse

Une entreprise horlogère suisses mentionne dans son catalogue la puissance
mécanique PW dissipée par une de ses horloges (fig. 2.1). Le travail effectué sur
l’horloge est dû à des fluctuations de température ∆T autour de la température
ambiante moyenne T . Il permet à l’horloge de fonctionner durant un intervalle
de temps ∆t. On considère que la pression atmosphérique p ext est égale à la
pression du gaz p, i.e. p ext = p. La pression p et le volume V du gaz sont liés
par la loi des gaz parfait p V = NRT où R est la constante des gaz parfait. En
considérant que le gaz à l’intérieur la capsule est toujours à l’équilibre avec l’air
à l’extérieur de la capsule (pression et température intérieures et extérieures
égales). D’après les données de l’entreprise horlogère, estimer le volume V de
la capsule de gaz utilisée pour faire fonctionner cette horloge.
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Fig. 2.1 Un horloge reçoit de l’énergie d’une capsule de gaz (zone grise). Le gaz se détend
et se comprime sous l’effet des fluctuations de la température ambiante.

Application numérique

PW = 0.25 · 10-6 W, T = 25◦C, ∆T = 1◦C, p ext = 105 Pa et ∆t = 1 jour.

2.7 Solution

D’après la relation (2.41), le travail infinitésimal effectué sur le gaz à pression
atmosphérique p constante dans le volume V à l’intérieur de la capsule s’écrit,

δW = − p dV

La loi des gaz parfait implique que,

dV =
NR

p
dT

Par conséquent, le travail infinitésimal effectué sur le gaz par l’environnement
devient,

δW = −NRdT

L’état initial i correspond à l’état d’équilibre « chaud » juste après une fluctua-
tion et l’état d’équilibre f correspond à l’état d’équilibre « froid » juste avant
la prochaine fluctuation. Le travail Wif effectué sur le gaz entre l’état initial i,
caractérisé par les grandeurs thermodynamiques (Vi = V + ∆V , Ti = T + ∆T )
et l’état final f , caractérisé par les grandeurs thermodynamiques (Vf = V ,
Tf = T ), est obtenu en intégrant l’équation précédente,

Wif = −
∫ Tf

Ti

NRdT = NR∆T

De plus, la loi des gaz parfait évaluée à l’état final implique que,

Wif =
p V

T
∆T

Ainsi,

V =
WifT

p∆T

D’après la relation (1.40) pour un processus mécanique à puissance constante,
le travail Wif est égal à la puissance mécanique PW multipliée par l’intervalle
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de temps ∆t durant lequel cette puissance est appliquée, i.e. Wif = PW ∆t.
Par conséquent, le volume V de la capsule est donné par l’expression,

V =
PW ∆t T

p∆T
= 128 cm3

2.8 Détentes réversible et irréversible d’un gaz

Une mole de gaz subit une détente au moyen de deux processus différents. Le
gaz satisfait l’équation d’état p V = NRT où R est une constante, N est le
nombre de moles, p la pression, T la température et V le volume du gaz. Les
températures initiales et finales sont T0. Les parois du récipient sont diathermes.
Toutefois, si un processus a lieu extrêmement rapidement, les parois peuvent
être considérées comme adiabatiques. La pression initiale du gaz est p1, le
pression finale est p2. Exprimer le travail effectué sur le gaz en termes de p1,
p2 et T0 pour les processus suivants :

1) un processus isotherme réversible,

2) une variation de volume extrêmement rapide durant laquelle la pression
exercée sur le gaz vaut p2, suivie par un processus isochore durant lequel
la température atteint à nouveau la température d’équilibre T0.

2.8 Solution

Afin de déterminer le travail effectué sur le gaz durant un processus d’un état
initial (V1, p1, T0) à un état final (V2, p2, T0), on utilise l’équation d’état,

p1 V1 = p2 V2 = NRT0 ainsi
V2
V1

=
p1
p2

1) Le travail effectué sur le gaz durant une expansion réversible de l’état initial
(V1, p1, T0) à l’état final (V2, p2, T0) est obtenu en calculant l’expression
intégrale (2.42),

W12 = −
∫ V2

V1

p dV = −NRT0
∫ V2

V1

dV

V
= −NRT0 ln

(
V2
V1

)
= −NRT0 ln

(
p1
p2

)
= NRT0 ln

(
p2
p1

)
2) Il n’y a pas de travail effectué sur le gaz durant un processus isochore

étant donné que le volume est constant. Pour déterminer le travail effectué
par l’environnement à pression p ext = p2 sur le gaz durant un processus
isobare irréversible de l’état initial (V1, p1, T0) à l’état final (V2, p2, T0), on
doit intégrer l’expression générale (2.36) de la puissance mécanique PW par
rapport au temps,

W12 =

∫ t2

t1

PW dt = −
∫ V2

V1

p ext dV = −
∫ V2

V1

p2 dV = − p2
∫ V2

V1

dV

= − p2V2 + p2V1 =
p2
p1

(p1V1)− p2V2 = NRT0

(
p2
p1
− 1

)
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2.9 Processus adiabatique réversible sur un gaz

Un gaz parfait à pression p et volume V est tel que son énergie interne est
donnée par U = c p V , où c est une constante sans dimension. Déterminer le
pression p (V ) pour une compression ou une expansion adiabatique réversible.

2.9 Solution

Comme le processus est adiabatique et réversible, il n’a a pas de variation
d’entropie. On peut donc utiliser le volume V comme unique variable d’état.
Ainsi, l’énergie interne s’écrit U (V ) = c p (V )V . La dérivée de l’énergie interne
par rapport au volume est donnée par,

dU

dV
= c

dp

dV
V + c p = − p

qui peut être remis en forme comme,

dp

p
+ γ

dV

V
= 0

où γ = (c+ 1) /c. L’intégration de cette expression de l’état initial (pi, Vi) à
l’état final (pf , Vf ) est écrite comme,∫ pf

pi

dp

p
+ γ

∫ Vf

Vi

dV

V
= 0

ce qui donne,

ln

(
pf
pi

)
+ γ ln

(
Vf
Vi

)
= 0 ainsi ln

(
pf V

γ
f

pi V
γ
i

)
= 0

Par conséquent, les variables initiales et finales sont liées par,

pi V
γ
i = pf V

γ
f

ce qui donne l’identité,
p V γ = cste

2.10 Compression thermique d’un ressort

On considère un piston de masse négligeable coulissant sans frottement dans
un cylindre d’aire A et attaché à un ressort dont la constante de rappel est k
(fig. 2.2). Lorsque le cylindre est vide, le piston se trouve en position x0. On le
remplit d’un gaz parfait qui satisfait la loi p V = NRT . L’énergie interne du
gaz est donnée par U = cNRT où c > 0 est une constante et R > 0 également.
Après remplissage, il se trouve alors à l’équilibre en position initiale xi. On
chauffe le cylindre et on constate qu’il se trouve alors à l’équilibre en position
finale xf . On suppose que ce processus est réversible et que le système se trouve
dans une enceinte à vide, c’est-à-dire que la pression dans l’enceinte est nulle.
La masse du piston n’est pas prise en considération ici.
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Fig. 2.2 Un piston enfermant un gaz passe de la position xi à la position xf , lorsque le
gaz contenu dans le cylindre est chauffé. Le piston est retenu par un ressort de constante
élastique k. La position au repos du ressort est en x0.

1) Déterminer le volume Va, la pression pa et la température Ta du gaz en
position d’équilibre a en termes des paramètres k, A, x0 et xa.

2) Montrer que la dérivée de la pression p par rapport au volume V est de la
forme,

dp

dV
=

k

A2

3) Déterminer le travail −Wif effectué par le gaz sur le ressort lorsque le
piston se déplace de xi à xf en termes des paramètres k, xi et xf .

4) Déterminer la variation d’énergie interne ∆Uif du gaz lorsque le piston se
déplace de xi à xf en termes des paramètres k, c, x0, xi et xf .

2.10 Solution

1) Dans l’état d’équilibre a où a = {i, f} (i.e. état initial ou final), le volume
du gaz parfait est donné par,

Va = Axa

et la pression du gaz parfait est donnée par,

pa = − Fa
A

=
k

A
(xa − x0)

où Fa est la projection de la force de rappel agissant sur le ressort. Vu que
le processus est réversible, la relation (2.37) implique que la pression du
gaz parfait est égale à la pression exercée par le ressort. La température du
gaz parfait est donnée par,

Ta =
paVa
NR

=
k

NR
(xa − x0)xa

2) Les expressions pour le volume et la pression du gaz parfait impliquent que,

dp = − 1

A
dF =

k

A
dx =

k

A2
dV

Ainsi,
dp

dV
=

k

A2
= cste
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3) Par conséquent, la pression p est exprimée en terme du volume V comme,

p =
k

A2
(V − V0)

Le travail −Wif effectué par le gaz parfait sur le ressort est donné en termes
de Vi et Vf par,

− Wif =

∫ Vf

Vi

pdV =
k

A2

∫ Vf

Vi

(V − V0) dV

=
k

2A2

(
V 2
f − V 2

i

)
− k

A2
V0 (Vf − Vi)

On peut réécrire ce résultat en termes de x comme,

−Wif =
k

2

(
x2f − x2i

)
− k x0 (xf − xi) =

k

2

(
(xf − x0)

2 − (xi − x0)
2
)

Le travail effectué par le gaz parfait sur le ressort est égal à la variation
d’énergie élastique du ressort lors de sa compression, ce qui signifie qu’il
est entièrement utilisé pour comprimer le ressort. Ceci est une conséquence
du fait que la dilatation du gaz parfait soit un processus réversible. La
variation d’énergie interne ∆Uif est donnée par,

∆Uif = cNR (Tf − Ti) = ck
(

(xf − x0)xf − (xi − x0)xi

)




